2,647 research outputs found

    Energy dependence of {\rm K}S0^0_{\rm S} and hyperon production at CERN SPS

    Full text link
    Recent results on KS0^0_{\rm S} and hyperon production in Pb-Pb collisions at 40 and 158 AA GeV/cc beam momentum from the NA57 experiment at CERN SPS are presented. Yields and ratios are compared with those measured by the NA49 experiment, where available. The centrality dependence of the yields and a comparison with the higher collision energy data from RHIC are discussed.Comment: 4 pages, 3 figures, proceedings of QM2004 conferenc

    Circadian signatures in rat liver: from gene expression to pathways

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Circadian rhythms are 24 hour oscillations in many behavioural, physiological, cellular and molecular processes that are controlled by an endogenous clock which is entrained to environmental factors including light, food and stress. Transcriptional analyses of circadian patterns demonstrate that genes showing circadian rhythms are part of a wide variety of biological pathways.</p> <p>Pathway activity method can identify the significant pattern of the gene expression levels within a pathway. In this method, the overall gene expression levels are translated to a reduced form, pathway activity levels, via singular value decomposition (SVD). A given pathway represented by pathway activity levels can then be as analyzed using the same approaches used for analyzing gene expression levels. We propose to use pathway activity method across time to identify underlying circadian pattern of pathways.</p> <p>Results</p> <p>We used synthetic data to demonstrate that pathway activity analysis can evaluate the underlying circadian pattern within a pathway even when circadian patterns cannot be captured by the individual gene expression levels. In addition, we illustrated that pathway activity formulation should be coupled with a significance analysis to distinguish biologically significant information from random deviations. Next, we performed pathway activity level analysis on a rich time series of transcriptional profiling in rat liver. The over-represented five specific patterns of pathway activity levels, which cannot be explained by random event, exhibited circadian rhythms. The identification of the circadian signatures at the pathway level identified 78 pathways related to energy metabolism, amino acid metabolism, lipid metabolism and DNA replication and protein synthesis, which are biologically relevant in rat liver. Further, we observed tight coordination between cholesterol biosynthesis and bile acid biosynthesis as well as between folate biosynthesis, one carbon pool by folate and purine-pyrimidine metabolism. These coupled pathways are parts of a sequential reaction series where the product of one pathway is the substrate of another pathway.</p> <p>Conclusions</p> <p>Rather than assessing the importance of a single gene beforehand and map these genes onto pathways, we instead examined the orchestrated change within a pathway. Pathway activity level analysis could reveal the underlying circadian dynamics in the microarray data with an unsupervised approach and biologically relevant results were obtained.</p

    Recent developments on the ALICE central Trigger processor

    Get PDF
    The ALI CE Central Trigger Processor has been constructed and tested, and will shortly be installed in the experimental area. In this review, we introduce the new developments in hardware and software, present a measurement of the minimum propagation time, and illustrate various trigger applications

    Timing in the ALICE trigger system

    Get PDF
    In this paper we discuss trigger signals synchronisation and trigger input alignment in the ALICE trigger system. The synchronisation procedure adjusts the phase of the input signals with respect to the local Bunch Crossing (BC) clock and, indirectly, with respect to the LHC bunch crossing instant. The synchronisation delays are within one clock period: 0-25 ns. The alignment assures that the trigger signals originating from the same bunch crossing reach the processor logic in the same clock cycle. It is achieved by delaying signals by an appropriate number of full clock periods. We propose a procedure which will allow us to nd alignment delays during the system con guration, and to monitor them during the data taking
    corecore